
esses
scope
nt proc-
n, Com-
icted
neric
el data
els in
designs

tate-of-
in the

rs, and
ntroduc-
ers of

era of
erged.

tural”,
when
of an
fur-

e, DSP
ation of
vels of

fore we

ls of

l of a
o hide

Rugby: A Meta-Model to Study
Concepts in Electronic System Design

Axel Jantsch, Shashi Kumar, Ahmed Hemani
Abstract: We propose a conceptual framework, called the Rugby Model, in which designs, design proc
and design tools can be studied. The model has similar objectives as the well known Y chart [1] but its
is extended to handle designs and design processes required for complex systems requiring concurre
esses and mixed HW/SW implementation. The Rugby model has four domains, namely, Computatio
munication, Data and Time. The behavioural domain of the Y chart is replaced with more restr
computation domain. The structural and physical domain of the Y chart are merged into a more ge
domain called Communication. The new domains Data and Time have become necessary to mod
abstractions used at various levels of design, and to explicitly model timing constraints at various lev
the design process, respectively. We show that the Rugby model is able to represent mixed HW/SW
and design processes for HW/SW codesign at various levels of abstraction. It not only can represent s
the-art of current electronic systems and electronic system design automation, but it also points to gaps
availability of tools and methodologies for designing complex system.

1: Introduction

A conceptual framework like the Y chart [1] helps designers, researchers, teachers, tool develope
foremost students, to conceptualise, categorise, and visualize issues in design automation. Since the i
tion of Y chart in 1983, the complexity in terms of transistor count has increased more than two ord
magnitude, which raises new design issues that are not naturally modelled on the Y chart. Today, the
system on a chip (SoC), with many concurrent and communicating activities on a single device, has em
The consequence is that we need to revise the meaning of the old domains like “behavioural”, “struc
and “physical”. Also some new aspects like data, time and communication have become important
dealing with complex systems. While Y chart suffices to describe the process of HW implementation
algorithm on a chip, a new model is required to deal with many communicating algorithms on a chip. A
ther complication is a heterogeneous implementation technology, which includes embedded softwar
cores, micro processor cores, and custom hardware. For instance, HW/SW codesign requires segreg
the design process at lower levels into separate HW and SW design flows, and integration at higher le
abstraction.

We must understand the three important concepts, namely, hierarchy, abstraction and domains be
present our model.

Hierarchy: A hierarchy is a, possibly recursive, partitioning of a design model such, that the detai
each part is hidden into a lower hierarchical level.

Hierarchy defines the amount of information presented and visible at a particular hierarchical leve
model. At all hierarchy levels the same modelling concepts are used. The motivation for hierarchy is t
information when it is not needed and to display details when they are useful.
1 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

a sys-
evant

erned
ment
creas-

s, until

other

different
e mod-

may be
helps
article

trans-
ral and
n lev-

quently,
the dis-
ms and
figure

he next
y model
nd by

arlier
e and
s from
have not

e more

and can
s and

dologies
meth-
hus, the
ains and
duced
al to the
f clarity
Abstraction: An abstraction level defines the modelling concepts and their semantics for representing
tem. The type of information available at different levels is different. A higher level ignores some irrel
information at a lower level and encodes it using different concepts.

Abstraction defines the type of information present in a model. Unlike hierarchy, abstraction is not conc
with the amount of information visible, but with the semantic principles of a model. In general, the move
from high to low abstraction levels includes a decision making process. By making design decisions and in
ing information about implementation details we replace more abstract models with less abstract model
the system is manufacturable.

Domain: A domain is an aspect of a model which can logically be analysed independently from
aspects.

A domain focuses on one design aspect. Real models always contain several aspects or domains but
models may emphasize one domain more than another. Models, which focus on one particular domain us
elling notations and constructs to model the design aspect of concern explicitly. Other design aspects
implicitly part of the models. Whereas hierarchy and abstraction simplifies the design, domain partitioning
the developers of tools and methodologies to cope with the complexity. The domains considered in this
are computation, communication, data, and time.

While hierarchical partitioning is mostly a manual endeavour, the definition of abstraction levels and
formations between them, is behind most of the advances in design automation. While hierarchy is a gene
important concept, it is not explicit in the Rugby model. We assume, hierarchy is possible at all abstractio
els in any domain.

Rugby covers and relates models of all design phases from requirements to implementation. Conse
it also allows to study the HW/SW codesign process. For the sake of conciseness and brevity we restrict
cussion here mostly to issues at the core of design of digital hardware and software of embedded syste
systems on a single chip. The model derives its name from the similarity of its visual representation (see
1) to the shape of a Rugby, with the domain lines forming the seams. The paper is organized as follows: T
section presents other meta-models and discusses briefly their limitations. Section 3 describes the Rugb
with its four domains. Section 4 outlines the possible use by mapping design activities into the model a
identifying research topics suggested by the model.

2: Existing Models

Previously proposed meta-models have several limitations which we try to overcome in Rugby. E
models like the Y chart [1] did not pay attention to time, data, and communication aspects. Gradually, tim
data abstractions have been introduced [2], but not consistently to cover all levels of representation
requirements to implementation. Communication has emerged as a hot research area, but meta-models
yet appreciated the fact, that topological and geometric structures are only low level manifestations of th
general concept of communication.

The Y chart and the design cube do not separate design modelling issues from design process issues
only be fully understood in the context of concrete methodologies and tools. Essentially, the domain
abstraction levels are chosen in a way to make them compatible with design languages, tools, and metho
under consideration. While this has the direct benefit of providing a frame to categorize models, tools and
odologies at the same time, we believe that much can be gained by cleanly separating these issues. T
Rugby model, as presented in this article, focuses solely on design modelling issues and selects the dom
abstraction levels only based on inherent properties of the models. In a variant of Rugby [3] we have intro
a fifth domain addressing the design process and we argue, that the design process domain is orthogon
design modelling domains and can also be viewed at several abstraction levels. However, for the sake o
and brevity we restrict the discussion in this article to the four modelling domains.
2 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

t has
ticular,
. But its
ctives to
different
by the

model
see for

ral and

r of sys-
nt proc-
tation,

allow
ance an
nd soft-
therefore

here is
ntation
tation

cuses
t timing
VSI’s Model Taxonomy [10] has been developed concurrently with and independently from Rugby. I
similarities in the basic understanding of the important issues in electronic designs at system level. In par
it also recognises the importance of the Time and Data domains and assigns them independent axes
objectives are focused on reuse of components and designs, whereas the Rugby model has the obje
derive a better understanding of electronic design concepts and processes. This is also revealed by the
names used, e.g. precision level in the model taxonomy and abstraction level in Rugby. It is underscored
determined attempt in Rugby to use clearly different concepts for different abstraction levels, while in the
taxonomy sometimes the same concepts with varying accuracy are used for several different levels,
instance the temporal precision.

3: The Rugby Model

Y chart is biased towards hardware implementation because its three domains, behavioural, structu

physical, are inadequate to represent concepts such as inter-process communication, timing behaviou
tems, and various types of data abstractions and data encoding. To model different aspects of concurre
esses and mixed HW/SW systems and analyse their different problems, we choose Compu
Communication, Time, and Data as the four domains in our model (see figure 1).

In order to represent different implementation technologies such as hardware and software, we
domain lines to be split. Hardware and software, when close to realization, use distinct concepts. For inst
assembler program and a netlist of gates are very different. On the other hand, at higher levels hardware a
ware developers use similar concepts such as communicating processes and abstract data types and can
be treated uniformly. Thus, at higher levels from requirements definition to communicating processes t
only one line in each domain representing the system level. This is independent from the later impleme
which can be hardware, software or a mixture of both. At lower levels the characteristics of the implemen
technology becomes dominant which requires separate domain lines as illustrated in figure 2.

3.1: Justification of Domains
The computation domain is derived from Y chart’s behavioural domain but is more restrictive and fo

on the way the results are computed independent of the exact data types involved and from the exac
behaviour of the computation.

Idea
Physical
system

Computation

Communication

Time

Data

Development time line

High
abstraction Low

abstraction

Figure 1. The Rugby model
3 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

ntity-
more

vity in
as an

ms are
lications
end-

abstract
primi-

re, lan-
ored to

from

lines
during

iour as
senting
For software there is a long tradition to model data types explicitly with modelling concepts such as e
relationship diagrams, and in the hardware community data structures have evolved from bit vectors to
complex data structures like arrays, records, linked lists etc. This is reflected in a flurry of research acti
this domain. Thus, for the modelling of mixed HW/SW systems it is desirable to treat data and data types
independent aspect.

Time is a crucial design characteristic which deserves independent analysis. Many electronic syste
expected to be reactive real-time systems or have hard real time constraints. Furthermore, numerous pub
on how to model time illustrate that it is not bound to particular kinds of computation, but it is rather indep
ent.

Complex systems are naturally modelled as communicating concurrent processes. Refining these
communications to intra and inter component (ASICs, processor cores, memories etc.) communication
tives is a major part of the design effort and is now being treated as a research problem [5]. Furthermo
guages and notations that were not main-stream in the hardware design community, are being expl
specify communication dominated functionality [6, 7].

Figure 2 magnifies part of the domain lines of the Rugby model and shows the abstraction levels

abstract requirements definitions to a concrete mixed HW/SW implementation. It illustrates that domain
can split when design activities specialise. However, each split must have a corresponding joining of lines
system integration, which is not shown in figure 2.

3.2: Computation
The computation domain is concerned with the relationship of input and output values, i.e. the behav

it is observable from the outside. At the transistor level, models are based on differential equations repre

Computation

T
ransistor

Logic B
lock

C
oncurrent P

rocesses

S
ystem

 F
unctions

R
elations and
C

onstraints

Instruction S
et

A
lgorithm

HW

SW

HW

SW

HW

SW

HW

SW

Communication

Layout

Topology

Inter P
rocess

C
om

m
unication

S
tructural and

Interface C
onstraints

P
aram

eter

A
ddressing

M
odes

P
assing

Data
N

um
ber

Logic

A
nalog

S
ym

bol

D
ata Type

C
onstraints

P
rocessor

D
ata Types

Value

Value

(bit,byte,w
ord)

Time

C
ausality

C
locked

P
hysical

T
im

ing C
onstraints

P
rocessor

T
im

e

T
im

e

C
ycle T

im
e

Idea Physical
system

Development time line

High
abstraction

Low
abstraction

Figure 2. Abstraction levels in modelling domains
4 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

ncepts
bstract
strac-

and
current

ns of
nd the
matics.

ments.
vement
ement.
meters.
th the
in the Y

ist two
the com-
concept
nd the

ication
al struc-

gn enti-
e, fre-
d logic

software
es, and

physi-
ges for
At the

. While
clocked
ed by
ime is
V-I characteristics. At the logic block level models are based on boolean functions.
The instruction set level is the lowest abstraction for software. Even though some computational co

like sequencing, branching and sub-routines are similar at the algorithmic level, it is considered less a
than the algorithmic level because the control elements are typically more primitive and it provides an ab
tion layer around the details of the underlying processor architecture.

At the algorithmic level, models are based on control primitives such as ‘sequence’, ‘parallel’, ‘if’
‘loop’, and operators which manipulate data objects. Parallelism at this level is expressed in terms of con
processes, where each process is typically described as an algorithm.

At the system function level the system is described from a purely external view without consideratio
the partitioning and the implementation of the system. The difference between the “system functions” a
“relation and constraints” level is analogous to the difference between a function and a relation in mathe

3.3: Communication
The communication domain is concerned with the connections and interactions between design ele

For hardware, the structural and physical domains of the Y chart are merged in this domain because mo
from a topological to a layout model is considered as a refinement operation, not as an inter-domain mov
The layout level is based on principles of geometry and uses physical units to describe geometric para
This level corresponds to the physical domain in the Y chart. The topological level is only concerned wi
presence or absence of connections between design elements. It corresponds to the structural domain
chart.

In software there is no equivalent concept to the topology and layout levels of hardware but there ex
other levels, which are denoted as “parameter passing” and “addressing modes”. Parameter passing is
munication concept between functions and procedures in a sequential algorithm. Addressing modes is a
used in the definition of instruction sets. They describe the communication between the computational a
storage parts of a processor.

The inter process communication level is concerned with mechanisms and protocols of commun
between design elements. The implementation of inter process communication channels and the physic
ture of the design is irrelevant at this level.

At the highest level only the interface and communication constraints are expressed.

3.4: Data
The data domain is concerned with data types and data objects which are transformed by active desi

ties. The analog value level is based on real numbers and is used to quantify physical units like voltag
quency, etc. The logic value level is based on mathematical logic and is used to represent boolean an
expressions. The number and symbol levels are based on number theory and set theory, respectively. In
the lowest abstraction level is based on data types of the target processor, which are typically bits, byt
words of varying length.

3.5: Time
The time domain is concerned with the time relation between activities. The physical time level uses

cal time units and is based on physical principles. Propagation delay, as it appears in simulation langua
digital systems, is a simplification of the physical time and could be viewed as separate abstraction level.
clocked time level all activities are related to a clocking scheme and are based on concepts of digital time
there is no analogous concept to physical time in software, the processor cycle time corresponds to the
time in hardware. At the causality level the total ordering of events is replaced by a partial ordering defin
generation and consumption of data and by explicit control dependences. At the highest level the t
expressed through performance constraints like data rate or frames per second.
5 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

are, as
differ-

different
l code-

r, and

e and

it prop-
e four

esign
not yet

odel-

rform-

ions is
on the

process
inde-

ages are
hronous

pecific

ugby
e 3.
opology.

ch, that

ation”

ing
In figure 2 we have emphasized that at high levels there is no distinction between hardware and softw
a system can be implemented either way or as a mix of both. However, at lower levels the abstractions are
ent and are therefore separated. At the same time, all software rests eventually on hardware. These two
views are both valid and correspond to two active HW/SW codesign research areas: horizontal and vertica
sign. In thehorizontal codesignone part of the system is implemented in software on a standard processo
the other part is implemented in custom hardware, e.g. an ASIC. In thevertical codesignthe system’s function-
ality is implemented entirely in software, but the underlying processor is also developed at the same tim
both, software and the hardware engine are designed and optimised at the same time.

Note that a model almost never uses elements from only one domain. In fact, most real models exhib
erties of all four domains, and can be characterized as a four tuple to indicate the abstraction level in th
domains.

4: Representation of Design Models and Activities

To illustrate the Rugby model we give a few examples showing how existing modelling efforts and d
methods and tools fit into the Rugby. More importantly, we point out some areas and issues which have
been investigated thoroughly but which may be interesting areas of research according to Rugby.

4.1: Design Modelling
Many dedicated modelling efforts are characterized by a specific abstraction level in one of the four m

ling domains. A few examples may illustrate the point.
• The use of abstract symbols for data without relying on specific data values is an important feature of pe

ance modelling in early system design phases.
• The distinguishing element between register-transfer models and behavioural models in HW descript

that the former assumes a clocked time and relates all activities to time slots, while the latter is placed
causality level of the time domain.

• System level activities are conveniently described in terms of communicating processes and the inter-
communication mechanism is often a distinguishing feature of a particular modelling approach, which is
pendent of the computation concepts they use. For instance some modelling approaches and langu
based on asynchronous, buffered communication (SDL, Erlang, CSP) while others are based on sync
communication (µC++, Lustre, SIGNAL, Esterel).

Specific abstraction levels in the four domains are related to each other and are typically dealt within s
design phases.

4.2: Design Transformations
In addition to conveniently representing traditional HW synthesis and SW compilation activities, the R

model can also represent activities in the now established field of HW/SW codesign as illustrated in figur
• HW/SW allocation and binding takes a description in terms of concurrent processes and generates a t
• HW/SW partitioning creates a relation between a set of concurrent processes and a topology.
• HW/SW binding refines this relation and creates a mapping between the processes and the topology su

each process is bound to only one topological element.
• HW/SW Interface Synthesis refines the Communication domain from the “Inter-process Communic

level to the “Topology” level.

4.3: Design Analysis and Estimation
Analysis, normally involves multiple domains. For example, a conventional logic simulation and tim
6 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

in the
main

tions
ints in
e easily

. For
l in the
at the

er of
ding the
future

coding
r per-
more
analysis tool requires models at the logic block level in the Computation domain, at the physical time level
Time domain, at the topology level in the Communication domain and at the logic value level in the Data do
as illustrated in figure 4.

At the beginning of the design cycle, a feasibility analysis of the model could be carried out using Rela
and Constraints level in the Computation Domain, Timing Constraints in Time domain, Data Type Constra
Data domain and Structural and Interface constraints in the Communication domain. This analysis can b
represented in the Rugby model.

Tools for performance modelling and formal verification can also be represented in this framework
example, a tool checking deadlock in a system may involve a model at the concurrent processes leve
Computation domain, at the causality level in Time domain, at the symbol level in the Data domain and
inter process communication level in the Communication domain.

4.4: Unexplored Problems and Issues
In addition to the representation of well formulated problems, the Rugby model brings out a numb

problems which have not been addressed adequately yet. Thus Rugby model not only helps in understan
current state-of-the-art in design and design automation, it also points to gaps and provides direction for
research.
• Data type refinement: At lower levels of the Data domain the refinement of data is handled by state en

and technology mapping techniques. But higher level models, which typically use abstract symbols fo
formance modelling, based on queuing theory or petri nets, have usually no direct link to models with
concrete data types to be used in the design and implementation process.

Computation

T
ransistor

Logic B
lock

C
oncurrent P

rocesses

S
ystem

 F
unctions

R
elations and
C

onstraints

Instruction S
et

A
lgorithm

HW

SW

HW/SW Interface

Functional
Partitioning

HW/SW

Synthesis

Allocation

HW

SW

Communication

Layout

Topology

Inter P
rocess

C
om

m
unication

S
tructural and

Interface C
onstraints

P
aram

eter

A
ddressing

M
odes

P
assing

and Binding

Figure 3. HW/SW codesign tasks in the Rugby model
7 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

3: In
unctions.
ansform
tion to

ously
ation,

con-
nstraints
cess.
• Transformation of system functions into concurrent objects indicated as functional partitioning in figure
early design phases a system is best described in terms of use cases [8], scenarios [9], and system f
These functions are independent from each other and represent the requirements. The challenge to tr
these system functions into interconnected concurrent objects is a key to link a problem oriented descrip
an implementation oriented model [4]. It has not been systematically addressed.

• The task of transforming requirements definitions into a system which fulfills the requirements is notori
difficult. The Rugby model indicates that we need to address this problem in all four domains: comput
time, data, and communication. Computational constraints in terms of input/output relations and timing
straints have to some extent been researched. But we have neither a formalism to express data type co
and structural and interface constraints, nor methods to integrate these constraints into the design pro

Computation

T
ransistor

Logic B
lock

C
oncurrent P

rocesses

S
ystem

 F
unctions

R
elations and
C

onstraints

A
lgorithm

HW

HW

HW

HW

Communication

Layout

Topology

Inter P
rocess

C
om

m
unication

S
tructural and

Interface C
onstraints

Data

N
um

ber

Logic

A
nalog

S
ym

bol

D
ata Type

C
onstraints

Value

Value

Time C
ausality

C
locked

P
hysical

T
im

ing C
onstraints

T
im

e

T
im

e

F
easibility
A

nalysis

Logic sim
ulation

and tim
ing analysis

P
ow

er/area
estim

ation for
algorithm

s

Figure 4. Design Analysis Tasks in the Rugby Model
8 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

perly
gns and
systems
omains
sses.
nd soft-
ols for

points
tion of

all four
s which
ct one
ss steps

stand-
odel,

ter,

DL
gn
tronic

od-
d

iling

mmu-

.org/
5: Conclusions

Conceptual frameworks need to evolve with the increasing complexity of electronic systems to pro
model, represent and analyse designs and design processes. A unified framework for modelling of desi
design processes of today’s digital electronic systems has been presented. It covers models of electronic
from requirements specification to the implementation. Our treatment of Data and Time as independent d
makes it distinctively more powerful for modelling mixed HW/SW systems and HW/SW codesign proce
We also observe that at higher levels of abstraction, the modelling concepts are common for hardware a
ware systems. By having an independent domain for design manipulation, we have shown how current to
design manipulation at different levels can be represented.

A good framework not only helps in studying and understanding the current state-of-the-art but also
out gaps and areas for future work. Our framework highlights that there is a lack of appropriate representa
models at the system level and of tools for the refinement and analysis of models at the highest level of
domains. Design methodologies can use this framework to define design documents and process step
correlate abstraction levels in different domains in a specific way. For instance a methodology could sele
domain leading the refinement process, e.g. the abstraction levels in the data domain could define proce
and each refinement of data would trigger a related refinement in the other three domains.

We believe a good conceptual framework makes the analysis and communication more efficient and a
ardization of such a framework including terminology, on the pattern of the 7 layer ISO OSI reference m
would foster research and development and bring discipline in the electronic design automation area.

6: References

[1] Daniel D. Gajski and Robert H. Kuhn, “Guest Editor’s Introduction: New VLSI Tools”, IEEE Compu
December 1983, pages 11-14.

[2] Wolfgang Ecker, Michael Hofmeister, and Sabine März-Rössel, “The Design Cube: A Model for VH
Design Flow Representation and its Application”, inHigh Level System Modeling: Specification and Desi
Methodologies, chapter 3, edited by Ronald Waxman and Jean-Michel Berge, Current Issues in Elec
Modeling, vol. 4, Kluwer Academic Publishers, 1996.

[3] Axel Jantsch, Shashi Kumar, and Ahmed Hemani, “The Rugby Model: A Framework for the Study of M
elling, Analysis, and Synthesis Concepts in Electronic Systems”,Proceedings of Design Automation an
Test in Europe (DATE), 1999.

[4] Axel Jantsch and Ingo Sander, “On the Roles of Functions and Objects in System Specification”,Proceed-
ings of the International Workshop on Hardware/Software Codesign, 2000.

[5] James A. Rowson and Alberto Sangiovanni-Vincentelli, “Interface-Based Design”,Proc. of the 34th Design
Automation Conference, 1997.

[6] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe, and J. Buck, “A System for Comp
and Debugging Structured Data Processing Controllers”,Proceedings of EuroDAC 96, Geneva, Switzer-
land, September 1996.

[7] Johnny Öberg, Anshul Kumar, and Ahmed Hemani, “Grammar-based Hardware Synthesis of Data Co
nication Protocols”,Proceedings of the 9th International Symposium on System Synthesis, pp. 14 - 19, 1996.

[8] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard,Object Oriented Software Engi-
neering: A Use Case Driven Approach, Addison Wesley, Reading, Massachusetts, 1992.

[9] Colin Potts, Kenji Takahashi, and Annie I. Anton, “Inquiry-Based Requirements Engineering”,IEEE Soft-
ware, March 1994.

[10] VSI System Level Design Model Taxonomy, VSI Reference Document, version 1.0, http://www.vsi
library/specs.htm, Virtual Socket Interface Alliance, October 1998.
9 of 9Submitted to IEEE Design & Test of Computers (22 March 2000 4:59 pm)

	1: Introduction
	Hierarchy
	Abstraction
	Domain

	2: Existing Models
	3: The Rugby Model
	Figure 1. The Rugby model
	3.1: Justification of Domains
	Figure 2. Abstraction levels in modelling domains

	3.2: Computation
	3.3: Communication
	3.4: Data
	3.5: Time

	4: Representation of Design Models and Activities
	4.1: Design Modelling
	4.2: Design Transformations
	Figure 3. HW/SW codesign tasks in the Rugby model

	4.3: Design Analysis and Estimation
	Figure 4. Design Analysis Tasks in the Rugby Model

	4.4: Unexplored Problems and Issues

	5: Conclusions
	6: References
	[1] Daniel D. Gajski and Robert H. Kuhn, “Guest Editor’s Introduction: New VLSI Tools”, IEEE Comp...
	[2] Wolfgang Ecker, Michael Hofmeister, and Sabine März-Rössel, “The Design Cube: A Model for VHD...
	[3] Axel Jantsch, Shashi Kumar, and Ahmed Hemani, “The Rugby Model: A Framework for the Study of ...
	[4] Axel Jantsch and Ingo Sander, “On the Roles of Functions and Objects in System Specification”...
	[5] James A. Rowson and Alberto Sangiovanni-Vincentelli, “Interface-Based Design”, Proc. of the 3...
	[6] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe, and J. Buck, “A System for Co...
	[7] Johnny Öberg, Anshul Kumar, and Ahmed Hemani, “Grammar-based Hardware Synthesis of Data Commu...
	[8] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard, Object Oriented Soft...
	[9] Colin Potts, Kenji Takahashi, and Annie I. Anton, “Inquiry-Based Requirements Engineering”, I...
	[10] VSI System Level Design Model Taxonomy, VSI Reference Document, version 1.0, http://www.vsi....

	Rugby: A Meta-Model to Study Concepts in Electronic System Design
	Axel Jantsch, Shashi Kumar, Ahmed Hemani

